Closing Tuesday: $\quad 6.3,6.4 \quad$ Write out each formula, then Closing Thursday:
6.5
Final exam is Saturday, December 10 5:00pm to 7:50pm in Kane Hall 130.
A:
I will email out a seating chart.
Entry Task:
Which account is best?
B:
A: 4%, compounded semi-annually
B: 3.97%, compounded monthly
C: 3.955%, compounded continuously
C:
The fast answer is to compute the annual percentage yield (APY) for each. Let me explain what APY is by doing the following:
6.3 and 6.4 Annuities

An annuity is an interest bearing account with regular deposits or withdrawals.

Two types of Annuities:
Ordinary Annuities = payments made at the END of each compounding period.

Annuities Due = payments made at the BEGINNING of each compounding period.

Two types of questions:

Future Value Questions =

start with zero dollars in the account, make regular deposits, find the future value.

Examples: Regular payments into a retirement account, or an account to pay for college, in these the account balance is growing.

Present Value Questions = start with a lot of money (call this P) in the account, make regular withdrawals, then end with zero in the account.

Examples: Withdrawing from your
retirement account, or paying down the balance of a loan, in these account balance is shrinking.

$R=$ amount of each regular payment

$r=$ decimal interest rate
$m=$ num. of compoundings in a year
Compute:
$i=\frac{r}{m}=$ rate at each compounding
$n=m t=$ total payments

	Ordinary (Payments at END of each period)	Due (Payments at BEGINNING of each period)
FV (Balance Growing)	$F=R \frac{(1+i)^{n}-1}{i}$	$F=R \frac{(1+i)^{n}-1}{i}(1+i)$
PV (Balance Shrinking)	$P=R \frac{1-(1+i)^{-n}}{i}$	$P=R \frac{1-(1+i)^{-n}}{i}(1+i)$

Where do these formulas come from?

 (You don't need to write this down).First, you need to know the geometric sum. By expanding you can see:

$$
\begin{aligned}
&(1+x)(x-1)=x^{2}-1 \\
&\left(1+x+x^{2}\right)(x-1)=x^{3}-1 \\
&\left(1+x+x^{2}+x^{3}\right)(x-1)=x^{4}-1 \\
& \text { and so on } . .
\end{aligned}
$$

In each case, dividing by $x-1$ gives

$$
\begin{array}{r}
1+x=\frac{x^{2}-1}{x-1} \\
1+x+x^{2}=\frac{x^{3}-1}{x-1} \\
1+x+x^{2}+x^{3}=\frac{x^{4}-1}{x-1}
\end{array}
$$

Thus, in general,

$$
1+x+x^{2}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1}
$$

For example:

$$
1+(1.02)+\cdots+(1.02)^{7}=\frac{(1.02)^{8}-1}{1.02-1}
$$

Second, consider an annuity with regular payments at the end of each quarter for 2 years and 8%, compounded quarterly.
$\mathrm{t}=2$ years
$r=0.08, m=4$,
$\mathrm{i}=\mathrm{r} / \mathrm{m}=0.02$ (rate used each quarter)
$\mathrm{n}=\mathrm{mt}=8$ payments

Map it out:

FROM THE LECTURE PACK:

1. At the end of each month, you place \$100 into an account bearing 6\% interest, compounded monthly. What is the balance of the account 5 years after you start?

Ordinary or Due?, FV or PV?
$r=\quad, m=\quad, t=$
$\mathrm{i}=\quad, \mathrm{n}=\quad$,
$\mathrm{R}=\quad, \mathrm{FV} / \mathrm{PV}=$
2. A company establishes a sinking fund to pay a debt of $\$ 100,000$ due in 4 years. At the beginning of each six-month period, they deposit $\$ \mathrm{R}$ in an account paying 9%, compounded semi-annually. How big must the payments be to pay the debt on time?

Ordinary or Due?, FV or PV?
$r=\quad, m=, t=$
$\mathrm{i}=\quad, \mathrm{n}=$
$R=\quad, F V / P V=$
3. Your retirement account earns 7\%, compounded quarterly. How much must the account contain when you retire if you want to withdraw $\$ 6000$ at the end of each quarter for 30 years?

Ordinary or Due?, FV or PV?
$r=, m=, t=$
$i=$
$\mathrm{R}=\quad, \mathrm{FV} / \mathrm{PV}=$
4. You inherit $\$ 200,000$ and invest it at 3%, compounded monthly. If you withdraw $\$ 1000$ at the beginning of every month, how long will the money last?

Ordinary or Due?, FV or PV?
$r=, m=, t=$
$i=$, $\mathrm{n}=$
$\mathrm{R}=\quad, \mathrm{FV} / \mathrm{PV}=$

